射线检测

^墨"""第一讲 射线照相检验技术的基础

郑世才

(新立机器厂,北京 100039)

BASES OF RAD DGRAPHY

Zheng Shica i (Xin li Machinery Plant, Beijing)

1 射线分类和射线衰减规律

11 概述

射线按其产生和特点常分为二类: 电磁辐射和 粒子辐射。

虽然 X 射线、 У射线产生的机制不同,能量也可 以不同,但它们的量子都是光量子(光子),都是电磁 辐射。 而 α 粒子、电子、中子和质子等都是粒子辐射。

电磁辐射通过光量子和物质相互作用。光量子 不带电,在与物质相互作用过程中,光量子的能量转 移给物质原子的电子或转化为其它粒子。在与物质 原子的一次碰撞中,损失其大部分能量或全部能量。 在穿过物质时,其强度按指数规律减弱。对一定能区 的电磁辐射,与物质的相互作用主要有光电效应、康 普顿效应、电子对效应和瑞利散射。

粒子辐射与物质的相互作用与粒子的特性密切 相关。例如,带电粒子与物质的相互作用主要有与核 外电子发生非弹性碰撞、与原子核发生非弹性碰撞 与原子核发生弹性碰撞和与核外电子发生弹性碰 撞。这些作用都是带电粒子与库仑场的作用,它们引 起电离、激发、散射和各种形式的辐射损失。在带电 粒子与物质的相互作用中,主要是通过与物质原子 的核外电子的多次非弹性碰撞逐渐损失能量,在一 次碰撞中所转移的能量很小。因此,一定能量的带电 粒子在物质中有确定的射程。

显然,电磁辐射和粒子辐射具有明显区别。以下 射线照相检验技术的讨论中,如果未作特殊说明均 指 X, *Y* 射线。

12 射线衰减规律

· 42 ·

当 X 射线 Y 射线(电磁辐射)射入物体后,将与物质发生复杂的相互作用,射线被散射和吸收,使从

物体透射的射线强度低于入射射线强度, 这称为射 线强度发生了衰减。

射线穿透物体时其强度的衰减与吸收体(射线入射的物体)的性质、厚度及射线光量子的能量相关。实验表明,对于一束射线,在均匀媒质中,在无限小的厚度范围 dx内,强度的衰减量 dI 正比于入射射线强度和穿透物体的厚度 x。这种关系可以写为

$$dI = -I\mu dx \qquad (1-1)$$

对此式进行积分,得到射线衰减的基本规律,即

$$I = I_0 e^{-\mu x} \tag{1-2}$$

式中 1——透射线强度

10——无吸收体时的入射线强度

 μ ——物体的线衰减系数, cm⁻¹

在实际射线探伤中,一般都是宽束射线情况,这 时透射射线强度应为一次射线和散射射线强度之 和,透射的一次射线一般记为 *I*_D,透射的散射线一 般记为 *I*_s,这样有

$$I = I_{\rm D} + I_{\rm S}$$

关于散射线常引入散射比, 记为 n, 则有

$$n = \frac{I_{\rm S}}{I_{\rm D}}$$

由于不同能量的射线,穿过同样厚度的物体时所产 生的衰减并不相同,这使连续谱射线的衰减规律变 得复杂。因此,在讨论连续谱射线的衰减规律时,常 引入等效能量或等效波长(平均波长),采用这个能 量或波长对连续谱射线的衰减规律进行近似的分 析、计算。这样有

$$I = I_{\rm D} + I_{\rm S} = (1 + n) I_0 e^{-\mu x}$$
(1-3)

式中 ——等效能量的线衰减系数

在理论研究中,也常引入积累因子B,即

$$B = 1 + \frac{I_{\rm S}}{I_{\rm D}} = 1 + n$$

这样,又有

$$I = B I_0 e^{-\mu}$$

对宽束连续谱射线严格地处理将比较复杂,但 只要认为式中的线衰减系数 µ 是对应于射线等效 波长的线衰减系数,那么就可以近似应用于宽束连 续谱射线的情况。

2 射线照相效应

2.1 射线照相效应的过程和特点

感光乳剂中的溴化银晶体受到射线照射后,与 光照射的情况类似,溴化银晶体点阵中将释放电子。 这些电子可以在乳剂中移动,在感光中心处被俘获, 与银离子中和形成银原子。上述过程可以写成

$$Br' + hv Br + e'$$

 $Ag' + e' Ag$

感光中心是感光乳剂制作过程中,在卤化银晶体的角、棱边等处形成的中性银原子或硫化银等聚 集处。按照能带理论,当溴化银点阵中嵌入了银、硫 化银等杂质质点时,由于它们的导带位置比溴化银 的导带稍低,并可能在溴化银的禁带中产生新的能 级。因此,在射线照射激发下,进入溴化银导带的电 子,可以自发地转移至银或硫化银的导带,即被感光 中心俘获。这就是潜影形成的第一阶段——电子传 导阶段。

感光中心俘获电子以后带负电荷,对溴化银点 阵格间的银离子(Ag⁺)具有吸引作用,使银离子向 感光中心移动,与电子中和形成银原子(Ag⁰),扩大 了感光中心的尺寸。这是潜影形成的第二阶段—— 离子调节阶段。电子阶段和离子阶段都是可逆的,在 感光过程中上述过程不断重复,直至曝光结束。这样 产生的银原子团称为显影中心(潜影中心),显影中 心的总和就是潜影。

这就是射线照相效应的基本过程。

22 显影

射线与可见光相比, 一个基本差别是射线光量 子的能量远大于可见光, 感光乳剂在射线照射下, 每 吸收一个射线光量子就能够产生多个银原子, 而可 见光的量子产率约为 1。在表 1-1 中列出了这方面 的一些研究结果。因此, 一个射线光量子能使一个或 多个卤化银颗粒显影, 这称为"一次撞击"本领。这导 致射线照相效应与可见光照相效应的明显不同是射 线照相效应不存在曝光量阈值, 可见光照相效应存 在曝光量阈值; 射线照相效应(直接对射线曝光)不 存在互易律失效, 可见光照相效应在低照度和高照 度时都存在互易律失效。

表 1-1 部分波长的量子产率

波长/×10 ⁻⁸ cm	量子产率	波长/×10 ⁻⁸ cm	量子产率
0.24	920	3 658	0 93
0. 63	363	4 047	0 92
1. 09	210	4 936	0.96
1.54	148		

对于由一般的照相过程得到的影象, 需要进行 显影和定影才能得到固定的影象。

显影本质上是一个氧化还原过程。显影从显影 中心开始,首先显影剂(还原剂)放出电子,自身氧 化。然后,溴化银晶体中的银离子(氧化剂)接受电 子,还原为银原子。实际过程大体是,溴化银晶体首 先吸附溴离子,形成负电层。在负电层外吸附钾正离 子,又形成一正电层。这样,在溴化银晶体表面和溶 液之间形成具有一定静电位的双电层。在显影过程 中,显影剂必须穿过双电层,吸附到溴化银晶体表 面,才能开始显影过程。电极理论认为,溴化银晶体 表面的显影中心,由于是银的微斑,因此吸附溴离子 少,其双电层薄弱,这样,带负电的显影剂容易吸附 在显影中心。银微斑具有良好的导电性,电子通过银 微斑从显影剂进入溴化银晶体, 与银离子中和形成 银原子。上述过程可概括为三个基本步骤,即显影剂 吸附到已感光的溴化银晶体表面;显影剂释放电子, 电子转移到显影中心; 电子与溴化银晶体中的银离 子结合成银原子,沉积在显影中心。为了满足显影的 条件,必须控制显影液的pH 值和溴离子浓度。

显影过程的三个特点是:

(1) 诱导期 从显影开始至显现初象, 对于正常的显影过程需经过 30~40s。诱导期的长短与照射量和显影剂的特点相关。

(2) 自动催化 显影过程生成的银原子具有促进显影过程的能力, 即显影过程一旦开始, 将显现加速进行的特点。

(3) 放大作用 显影过程得到的银原子数远多 于曝光产生的银原子, 其比约为 10[°]~ 10^{1°}。

为产生超加和作用, 显影液一般用两种显影剂 配合作为新的显影剂, 对苯二酚与米吐尔作为显影 剂的显影液称为M Q 显影液, 对苯二酚与菲尼酮 作为显影剂的显影液称为 P Q 显影液。与M Q 显 影液相比, P Q 显影液的显影能力更强, 不易氧化, 对温度不敏感, 对溴离子敏感差, 得到的影象对比度 更高、颗粒更细。表 1-2 列出了显影液各成分的作用 与特点。

23 定影

显影之后在乳剂层还有相当数量的卤化银未被

表 1-2 显影液各组分的作用与特点

组分	常用化学药品	作用	特点
显影剂	米吐尔 对苯二酚 菲尼酮	与卤化银发生氧化还原反应, 使感光的卤化银还原为 金属银	作用快, 反差小, 易氧化, 对温度不敏感 作用慢, 反差大, 氧化慢, 对温度敏感 强超加和性, 不易氧化, 对温度不敏感
保护剂	无水亚硫酸钠	优先与氧化合, 防止显影剂氧化, 稳定显影剂性能	
加速剂	无水碳酸钠 氢氧化钠	中和显影产生的氢离子, 控制显影液的碱性, 保证显影 剂离解作用	逐步离解, 稳定性好 快速离解, 失效快, 强腐蚀性
抑制剂	溴化钾	吸附在卤化银颗粒上, 排斥显影剂负离子, 减少未曝光 卤化银的显影	
溶剂	水	溶解药品	

还原为原子银, 定影过程的基本作用是将保留在乳 剂层中未感光的卤化银从乳剂层中溶解掉, 并使显 影形成的影象固定下来。在定影过程中定影剂硫代 硫酸钠与卤化银发生化学反应, 生成溶于水的银的 络合物, 但对已还原的金属银不发生溶解作用。

定影过程一般可分为两个(或三个)阶段,即

 $A \ gB \ r \ + \ N \ a_2 S_2 O_3 = \ N \ aB \ r \ + \ N \ aA \ gS_2 O_3$

 $3N aA gS_2O_3 + N a_2S_2O_3 = N a_5A g_3 (S_2O_3)_4$

或 $N aA gS_2O_3 + N a_2S_2O_3 = N a_3A g (S_2O_3)_2$

第一阶段硫代硫酸钠与卤化银反应, 生成不溶于水的硫代硫酸银钠, 但底片可呈现为透明状。在第二阶段硫代硫酸钠与生成的不溶于水的硫代硫酸银钠继续反应, 生成可溶于水的硫代硫酸三银钠。此时定影过程完成。第二阶段反应时, 定影液中必须有足够的定影剂硫代硫酸钠。

目前在工业中应用的一般都是酸性定影液,其 各组分的作用见表 1-3。

完成定影所需要的时间与定影液中硫代硫酸钠 浓度、定影液老化程度及定影温度都相关。胶片从停 显液移入定影液开始至未感光部分呈现透明所需的 时间常称为"定透时间"(或"通透时间"),如果定影 时间短于定透时间,射线照片将呈现灰白雾状,影象 明显不清晰。定影时间超过定透时间,胶片未感光部 分也已呈现透明状态,但不能简单地认为定影过程 已经完成。定影过程中硫代硫酸钠与卤化银的反应 要经过多个阶段,中间阶段生成的银的络合物是无 色但稍溶于水的物质,因此,在胶片未感光的部分已 呈现透明时,很可能这些反应生成物并未转移至定 影液中,定影过程也未进行完毕。实验研究指出,定 影时间应为定透时间的2倍。如果定影液过分老化, 使定影时间过长,可导致定影过程产生的硫代硫酸 银(钠)粘附在明胶上,水洗难以去除,最终分解、变 表 1-3 定影液各组分的作用与特点

组分 常用化学药品		常用化学药品	· 作用与特点
定影	剂	硫代硫酸钠	溶解未感光的卤化银,固定银影象。溶解 能力适中,在酸性溶液中稳定,价格较低
酸性	剂	冰醋酸 硼酸	保持定影液酸度, 延长定影液的保存期; 中和显影液带入的碱性, 防止二色性灰雾。 pH 4
保护	·剂	亚硫酸钠	优先与H ⁺ 化合,控制定影液的酸度,减 少硫酸根分解(产生硫沉淀),定影液的酸 度一般控制在pH= 4~ 5
坚膜	剂	硫酸铝钾	防止乳剂膜吸水膨胀变软, pH= 4~ 5 时 效果好
溶	剂	水	溶解药品

注: pH 值即溶液的酸碱度, 定义为 pH = - lg [H⁺], [H⁺]为溶 液的氢离子浓度, 单位是克离子/升。纯水的氢离子浓度为 10⁻⁷, 所 以其 pH = 7, 酸的 pH < 7, 碱的 pH > 7。

色,破坏底片质量。定影后在胶片表面和内部都吸附 着硫代硫酸钠和银的络合物,如因水洗不足,它们留 在射线底片里,银的络合物会很快分解,硫代硫酸钠 会缓慢地与空气中的水分、二氧化碳进行反应,最终 产生棕黄色的硫化银,导致射线底片上出现黄斑。所 涉及的一些主要反应如下

N
$$a_2S_2O_3 + CO_2 + H_2O = H_2S_2O_3 + N a_2CO_3$$

H $_2S_2O_3 = H_2SO_3 + S$
(硫代硫酸分解生成亚硫酸和硫)
2A g + S = A g_2S
(生成硫化银, 呈棕黄色)
H $_2SO_3 + O_2 = 2H_2SO_4$
(亚硫酸与氧反应生成硫酸)
H $_2SO_4 + A g_2S = A g_2SO_4 + H_2S$
(硫酸与硫化银反应生成白色硫酸银和硫化氢)
2A g + H $_2S = A g_2S + H_2$
(硫化银呈棕黄色)

3 影象质量

影象质量的基本因素可从金属阶梯的透照结果 得到说明。当透照一金属阶梯时,阶梯交界处的影象 如图 1-1 所示。理想的影象应如图 1-1a 所示,实际 影象应如图 1-1b 所示。如果对射线底片上的影象黑 度用测微光度计沿某阶梯厚度变化方向进行扫描测 量,将得到如图 1-1c 所示的黑度分布图,可见黑度 分布具有细致的不规则起伏变化。图中的 ΔD,U 和 a 就是影象质量的三个基本因素,即对比度(衬 度)、不清晰度和颗粒度(或噪声)。

图 1-1 金属阶梯影象的黑度分布

影象对比度定义为射线底片上两个区域的黑度 差,一般记为 ΔD。对射线底片上的影象,对比度常 指细节影象黑度与背景黑度之差。影象不清晰度是 射线底片上细节影象边界扩展的宽度(半影宽),对 工业射线照相,主要的不清晰度有几何不清晰度 U_s 和固有不清晰度 U_i,此外还有屏不清晰度 U_s和运 动不清晰度 U_m。几何不清晰度是由于射线源总有一 定的尺寸,以致细节影象具有一定半影宽度。固有不 清晰度是由于入射到胶片的射线,在乳剂层中激发 出的次级电子的散射产生的,它的大小决定于次级 电子在乳剂层中能量损失的过程,因此固有不清晰 度决定于射线的能量。射线照相总的不清晰度 U_s 由 以上各种不清晰度综合构成,对于常规射线照相,只 考虑几何不清晰度和固有不清晰度。

微观上,影象由金属银颗粒组成。这些颗粒呈现

不均匀的分布,颗粒之间存在不等的空隙。在一定的 放大倍数下,眼睛可以看到影象黑度的不均匀性,这 就是影象的颗粒性。颗粒性的客观量度称为颗粒度。 影象的颗粒度不等于胶片感光乳剂卤化银的颗粒大 小。实际上,X射线胶片卤化银颗粒的尺寸很小,一 般 1µm,这样小的尺寸在放大20倍时也不容易识 别。颗粒度是卤化银微粒的尺寸及其在乳剂中分布 的随机性和射线光量子被吸收的随机性的反映。颗 粒度除了与胶片本身的性质相关外,还与射线能量 和曝光量相关,也与显影条件和显影过程相关。在较 低能量的射线和较大的曝光量下透照,可以得到较 小的颗粒度,反之,将增大颗粒度。显影条件与胶片 特性不符合,显影过程不足或过度,也将引起颗粒度 增大。颗粒度限制了影象能够记录的细节的最小尺 寸。

有关的主要公式有:

(1) 射线照相对比度

$$\Delta D = - \frac{0.434\mu G\Delta T}{1+n}$$
(1-4)

式中 G——胶片特性曲线在某一黑度处的梯度

$$G = \frac{dD}{d \lg E}$$

此公式可如下导出:
胶片特性曲线的函数关系式有
$$D = G \lg H + C$$

$$D = G \lg H + C$$
(1-5)
$$D = G \lg H + C$$

式中 H = It

$$H = I t$$

由于 $\Delta T \ll T$, 所以近似有

$$G = G$$

$$\Delta D = G (lgH - lgH)$$

$$\Delta D = G \lg \frac{I}{I}$$

 $e^{x} = 1 + x (|x| \ll 1)$

 $\Delta D = G \lg e^{\frac{\Delta I}{I}}$

 $e^{\frac{\Delta I}{I}} = 1 +$

从近似关系式

得

$$\Delta D = G \frac{\Delta I}{I} \text{lge}$$
 (1-6)

 $\Delta L = L$

)

又有 $\frac{\Delta I}{I} = -$

代入式(1-6),则得到对比度的公式,即式(1-4)。

(2) 不清晰度

$$U_{g} = \frac{\Phi_{T}}{F - T}$$
(1-7)

式中 ϕ —焦点或射源尺寸

F——焦点或射源至胶片距离

Т

 $U_{t}^{2} = U_{g}^{2} + U_{i}^{2}$ (1-8) 有时也采用下面的关系式

$$U_{t}^{3} = U_{g}^{3} + U_{i}^{3}$$
 (1-9)

研究指出,如果细节影象的宽度尺寸小于射线 照相总的不清晰度,那么不清晰度将引起影象对比 度降低。近似认为不清晰度曲线为直线时可得到

$$C = C_0 \frac{W_0}{U} \quad (w_0 < U) \quad (1-10)$$

式中 *C*——不清晰度为*U* 时影象的对比度

Co——不清晰度为 0 时影象的对比度

w₀——细节影象(在Ug= 0时)的宽度 这个关系适用于各种不清晰度。

4 细节影象的可识别性

按照射线照相技术的一般理论,为了识别射线 底片上一个细节的影象,这个细节影象的对比度 ΔD 必须满足两个条件:

(1) $|\Delta D| \quad \Delta D_{min}$ (2) $|\Delta D| \quad (3 \sim 5) \sigma_{5}$

式中 ΔDmm——识别细节影象所需的最小黑度差 (日本称为识别界限对比度)

ω——射线照片黑度不均匀性的标准差 第一个条件是从眼睛的视觉特性提出的。识别 一个细节影象所需的最小黑度差 ΔD mm, 决定于眼

睛的视觉特性及关于细节影象的形状、尺寸。例如, 在适当的照明条件下,识别一些细节影象所需的最 小黑度差为

细长丝状影象 ΔDmm= 0 006

细小点状影象 ΔDmin= 0 008

较大点状影象 △Dmm= 0 006

第二个条件是从统计理论的信噪比概念提出 的,即信号必须高于噪声 3~5倍,才能从背景噪声 中识别出信号。 a 是以影象黑度的标准差表示的影 象颗粒度,一般可简单地认为是塞尔文颗粒度。

研讨射线底片上各种细节影象的可识别性,即 其对比度 ΔD 与射线照相技术因素及本身形状、尺 寸的关系时,均有如下近似假定:

(1) 缺陷尺寸相对于工件厚度很小,有缺陷与 无缺陷处的散射比一样。

(2)射线底片上细节影象的宽度等于细节本身的宽度与不清晰度之和。

(3) 细节影象的可识别性决定于细节影象的黑 度峰值与背景黑度之差。

· 46 ·

(4) 射线照相影象的黑度分布可以用形状因子 修正为矩形分布。

(5) 影象的颗粒度对影象可识别性的影响可以 忽略。

对丝型细节 $\frac{\pi d^2}{4F(U+d)} = -\frac{2.3\Delta D(1+n)}{\mu G}$ (1-11) 对柱孔细节

$$\frac{hd^2}{F(2U+d)^2} = -\frac{2 \ 3\Delta D \ (1+n)}{\mu G} \quad (1-12)$$

对球孔细节

$$\frac{2d^3}{3F(2U+d)^2} = -\frac{2\cdot 3\Delta D(1+n)}{\mu G} \quad (1-13)$$

对矩形缝细节

$$\frac{l \cdot w}{F(l \cdot \sin\theta + w\cos\theta + U)} = -\frac{2 \cdot 3\Delta D \cdot (1 + n)}{\mu G}$$

h——柱孔所在阶梯的板厚

1——矩形缝长度

w ——矩形缝宽度

θ——矩形缝长度方向与射线束所成的角度

以上各式右边均可用对比灵敏度或厚度灵敏度 Δx 表示, 且 ΔD 应为 ΔD mm, 即

$$\Delta x = - \frac{2 \ 3\Delta D_{\min}\left(1+n\right)}{\mu G}$$

裂纹参数示意图见图 1-2。

图 1-2 裂纹的三个参数

形状因子 F 的值如下:

对丝 d > U 时, F = 1; 其余 $F = 2/\pi$,

对柱孔 d/2 U_{t} 时, F = 1; $d/2 < U_{t}$ 时, F = 0 48;

对矩形缝 w/U > 0.6时, F = 1; w/U = 0.6时, F = 1; w/U = 0.6时, F = 0.5w/U + 0.67。

5 自然缺陷检验灵敏度

射线照相检验的缺陷,按缺陷的特点可粗略分 为四类:

(1) 点状缺陷(如气孔等) 这类缺陷的基本形 状为球形,体积小,不形成特定的延伸方向。

(2) 面状缺陷(如裂纹、未熔合、未焊透和冷隔 等) 这类缺陷的基本特点是断面上宽度很小,具有 很大的深宽比, 一般具有特定的延伸方向。

(3) 条状缺陷(如条状夹渣和条状气孔等) 这 类缺陷的断面近似为圆形,具有一定的长度。

(4) 体积状缺陷(如缩孔,大夹杂物和大气孔 等) 这类缺陷具有较大的体积,可认为无特定的延 伸方向。

缺陷检验灵敏度是指在一定的射线照相技术下 可识别的缺陷最小尺寸。影响缺陷检验灵敏度的因 素包括射线照相技术、缺陷本身的性质、缺陷的形状 和尺寸、工件特性(几何形状等)及缺陷在工件中的 位置。对上述四类缺陷可分别用不同细节的可识别 性公式估计其缺陷检验灵敏度。

关于射线照相技术对缺陷,特别是对裂纹的检 验能力曾进行了大量理论和试验研究,得到的主要 结果有:

若 θ= 0 °W < U t, 则

$$lw = - \frac{2 \cdot 3F \Delta D \cdot (1 + n)}{\mu G} U_{t}$$

最大可检验的裂纹角度

$$\sin\left(\mathbf{\theta}_{\mathrm{nax}}\right) = \frac{3w}{2\Delta T} - \frac{U_{\mathrm{t}}}{l}$$

1

裂纹缺陷检验灵敏度与丝型象质计灵敏度的关系

$$w = \frac{0.8d^2}{1 + \frac{d}{U}}$$

日本的一些研究者从试验中概括出下面的关系

(上接第16页)

surface inspection Steel Times International, 1998, 22 (3): 30

- 5 David G Park, Martin P Levoi, Haneghem A I van Practical application of on-line hot strip inspection system at hoogovens Iron and Steel Engineer, 1995, 72 (7): 40-43
- 6 B indra A. Speedier ADC spickup more bits and samples Electronic Design, 1999, 47(2): 66-74
- 7 钟玉琢, 乔秉新, 李树青 机器人视觉技术 北京: 国防工 业出版社, 1994.
- 8 张大鹏 模式识别与图象处理并行计算机系统设计 哈尔 滨:哈尔滨工业大学出版社,1998
- 9 Keinosuke Fukunaga, Raymond R Hayes Effect of sample size in classifier design IEEE Trans Pattern A nalM achine Intell, 1989, 11(8): 873-885

收稿日期: 1999-08-17

$$kw = K \, \Theta d^3$$

 K_{θ} 与角度 θ 的关系见图 1-3。英国国家标准 BS 7257—1989 在其附录 E 中给出了下列关系:

图 1-3 K_{θ} 与角度 θ 的关系

(1) 气孔可检出直径 d 与阶梯孔象质计灵敏度 S ⊾的关系

$$d = \frac{3}{2}S_{\rm h} \bullet T$$

式中 T——工件厚度

(2) 夹渣可检出尺寸 d 与阶梯孔象质计灵敏度 S_h 的关系(工件厚度 T 较小时)

$$d = 3S_h \bullet 7$$

(3) 平面状缺陷可检出尺寸与射线技术 对比 度、不清晰度等存在着复杂的关系。

收稿日期: 1999-08-10

(上接第27页)

2(5): 50-65

- 5 JIS G0565-1974 钢铁材料的磁粉探伤试验方法和缺 陷磁痕的等级分类
- 6 , 1966,
- 7 仲维畅 磁偶极子与磁粉探伤 无损检测, 1990, 12(3): 66 - 70
- 8 王先冲 电磁场理论与应用 北京:科学出版社, 1986
- Zhong Weichang Magnetic particle inspection -— a new theory. The British Journal of Nondestructive Testing, 1993, 35(2): 68- 74
- 10 仲维畅 磁化场方向影响磁粉显现缺陷的理论 无损检 测, 1995, 17(5): 138-143
- 11 仲维畅, 殷 璇, 傅国耀 磁偶极子磁场的等强度线 无 损检测,21(3):124-125
- 12 赵凯华,陈熙谋 电磁学 北京: 高等教育出版社, 1978

收稿日期: 1996-09-02